PROPERTIES OF REGULAR FUNCTIONS WITH VALUES IN BICOMPLEX NUMBERS
نویسندگان
چکیده
منابع مشابه
Normal Families of Bicomplex Holomorphic Functions
In this article, we introduce the concept of normal families of bicomplex holomorphic functions to obtain a bicomplex Montel theorem. Moreover, we give a general definition of Fatou and Julia sets for bicomplex polynomials and we obtain a characterization of bicomplex Fatou and Julia sets in terms of Fatou set, Julia set and filled-in Julia set of one complex variable. Some 3D visual examples o...
متن کاملValiron Exceptional Values of Entire Functions of Completely Regular Growth
6. M. M. Dragilev, "On compatibly regular bases in nonnuc!ear Kothe spaces," Mat. Zametki, 30, No. 6, 819-822 (1981). P. B. Djakov, "A short proof of the Crone and Robinson theorem on quasiequivalence of regular bases," Stud. Math., 53, No. 3, 269-271 (1975). V. P. Zakharyuta and V. P. Konkdakov, "on the weak equivalence of bases of Kothe spaces," Izv. SKNts, VSh, ~, 12-15 (1983). M. M. Dragile...
متن کاملNormality of numbers generated by the values of entire functions
as N → ∞, where the supremum is taken over all blocks d1 . . . dl ∈ {0, 1, . . . , q − 1} . We want to look at numbers whose digits are generated by the integer part of entire functions. Let f be any function and [f(n)]q denote the base q expansion of the integer part of f(n), then define θq = θq(f) = 0.[f(1)]q[f(2)]q[f(3)]q[f(4)]q[f(5)]q[f(6)]q . . . , τq = τq(f) = 0.[f(2)]q[f(3)]q[f(5)]q[f(7)...
متن کاملExtreme values of Artin L-functions and class numbers
Assuming the GRH and Artin conjecture for Artin L-functions, we prove that there exists a totally real number field of any fixed degree (> 1) with an arbitrarily large discriminant whose normal closure has the full symmetric group as Galois group and whose class number is essentially as large as possible. One ingredient is an unconditional construction of totally real fields with small regulato...
متن کاملSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2016
ISSN: 1015-8634
DOI: 10.4134/bkms.2016.53.2.507